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Abstract The eye and brain: standard thinking is that
these devices are both complex and functional. They are

complex in the sense of having many different types of

parts, and functional in the sense of having capacities that
promote survival and reproduction. Standard thinking says

that the evolution of complex functionality proceeds by the

addition of new parts, and that this build-up of complexity
is driven by selection, by the functional advantages of

complex design. The standard thinking could be right, even

in general. But alternatives have not been much discussed
or investigated, and the possibility remains open that other

routes may not only exist but may be the norm. Our pur-

pose here is to introduce a new route to functional com-
plexity, a route in which complexity starts high, rising

perhaps on account of the spontaneous tendency for parts

to differentiate. Then, driven by selection for effective and
efficient function, complexity decreases over time. Even-

tually, the result is a system that is highly functional and

retains considerable residual complexity, enough to
impress us. We try to raise this alternative route to the level

of plausibility as a general mechanism in evolution by
describing two cases, one from a computational model and

one from the history of life.

Keywords Evolution ! Complexity ! Constructive neutral

evolution ! Irreducible complexity ! ZFEL

Introduction

In a famous passage of On the Origin of Species, Darwin

answers the skeptic’s charge that natural selection could
not possibly explain the evolution of complex structures

such as the eye, what he called ‘‘organs of extreme

perfection.’’

To suppose that the eye, with all its inimitable con-

trivances for adjusting the focus to different dis-
tances, for admitting different amounts of light, and

for the correction of spherical and chromatic aberra-

tion, could have been formed by natural selection,
seems, I freely confess, absurd in the highest possible

degree. Yet reason tells me, that if numerous grada-

tions from a perfect and complex eye to one very
imperfect and simple, each grade being useful to its

possessor, can be shown to exist; if further, the eye

does vary ever so slightly, and the variations be
inherited, which is certainly the case; and if any

variation or modification in the organ be ever useful

to an animal under changing conditions of life, then
the difficulty of believing that a perfect and complex

eye could be formed by natural selection, though

insuperable by our imagination, can hardly be con-
sidered real. (Darwin 1859, pp. 186–187)

The argument is straightforward and sensible. Starting
with a simple functional structure—for the eye, he pro-

posed, a nerve ending with a light-sensitive pigment—

selection builds up to complex structure by incremental
addition. Intermediate stages, in this argument, are not only

functional and thus preserved, but are increasingly func-

tional. They are improvements.
Darwin’s answer has been a model for evolutionists

answering modern challenges to evolution, from the
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argument from design to the problem of ‘‘irreducible

complexity.’’ For example, skeptics have charged that the
bacterial flagellum is so complex—consisting as it does of

so many interdependent parts—that it could not possibly

have arisen by incremental addition. Intermediates would
not have been adaptive, the complaint goes. They would

not have been preserved by natural selection. Half a fla-

gellum does not propel a bacterium. The Darwinian reply
has been to argue that intermediates could indeed have

been adaptive. And the modern argument adds to Darwin’s
tactic the possibility of exaptation, or change of function.

The intermediates in the incremental build-up to the bac-

terial flagellum could have functioned for something other
than propulsion.

The Darwinian route to complexity works, and indeed it

could be right—right in the sense that it could correctly
describe the most common route by which complex

structures arise in evolution. But there are other possible

routes. Here we show how complexity could arise, not by
incremental addition but by incremental subtraction. We

offer an evolutionary logic in which function arises in

structures that are already complex, sometimes more
complex than they need to be. Natural selection then favors

a reduction in the complexity of these structures. They lose

parts, to produce structures that are still functional, some-
times improvements, and often still sporting considerable

residual complexity. There is nothing undarwinian about

this route. It relies heavily on the principle of natural
selection. But as will be seen, it also invokes a second

principle to account for the initial complexity, what has

been called the zero-force evolutionary law (ZFEL, McS-
hea and Brandon 2010), the spontaneous tendency for parts

to differentiate.

We begin with a discussion of complexity, of how we
are using the term in this paper and how it can arise via the

ZFEL. We then offer an abstract demonstration of our

alternative route, showing how complexity by subtraction
works in a now-standard computational model, evolving

cellular automata. We then examine what we take to be a

parallel case in a biological system, the evolution of the
vertebrate skull. Finally, we discuss some implications of

this alternative route.

Complexity

In his classic treatment of orchids, Darwin refers to ‘‘dif-

ferentiation of parts and consequent complexity of struc-

ture’’ (Darwin 1862, p. 333), making what must have been
for him a meaningful connection between the two concepts,

differentiation and complexity. A century and a half later,

this connection still has strong intuitive appeal in biology.
For example, Buchholtz and Wolkovich (2005) adopted it

in their study of whale vertebral columns, measuring

complexity using a number of metrics, all of them variance
analogues, in other words, functions of the degree of

phenotypic differentiation among the vertebral bones (see

also McShea 1992, 1993).
Differentiation is complexity in its continuous sense.

But it also has a discrete sense, number of part types. For

example, in multicellular organisms, variation among cells
is often discontinuous, so that the complexity of a multi-

cellular organism at the cell level can be measured as the
number of cell types (Bonner 1988; Valentine et al. 1994).

McShea (2002) used this measure to assess complexity at

the subcellular level, measuring complexity of cells at
roughly the organelle level with counts of number of

organelle-sized part types. Marcus (2005) counted part

types to investigate complexity of microbes. Cisne (1974)
and Adamowicz et al. (2008) counted part types in studies

of complexity of arthropod limb series. Finally, complexity

in the sense of number of part types is becoming the
industry standard in molecular biology. For example,

Finnigan et al. (2012) used the term ‘‘complex’’ to describe

‘‘molecular machines’’ with more part types (see also
Doolittle 2012).

Notice that complexity as number of part types includes

no notion of function. This is complexity in what might be
called its ‘‘pure’’ sense (McShea and Brandon 2010),

uncontaminated with any consideration of the degree of

adaptedness, sophistication, or function. It is not that
functionality is unimportant. On the contrary, in studies of

the evolution of complexity, a central question has to do

with a possible connection between complexity and func-
tionality. (Indeed, it is central in this one.) Rather, it is that

in order to investigate that connection, it is essential to

keep the concepts separate.

Parts and Levels

A technical definition of a part is offered elsewhere

(McShea and Venit 2001). For present purposes, it is

enough to say that parts are entities that are isolated to
some degree from adjacent entities, with a boundary or

change in composition serving as an indicator of isolation.

Importantly, complexity in the sense of part types is level
relative. A fish has about 120 part types at the level of cells

(i.e., 120 cell types), but at the tissue/organ level it has only

about 90. At the molecular level it has some very large
number (the huge number of molecular species present in a

fish), while at the atomic level, the number of part-types

(i.e., atom types) is probably about a dozen, i.e., the
number of elements present in any appreciable number.

There is no contradiction here. And there is no privileged

level, no level at which a ‘‘true’’ complexity can be mea-
sured. In the examples that follow, we have chosen to
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measure complexity at certain levels because those levels

reveal certain patterns of change that make our point. But it
is important to recognize that different patterns of change

might occur at other levels.

The Zero-Force Evolutionary Law

In any system with reproduction and heritable variation, the
expectation in the absence of opposing forces or limiting

constraints is increasing complexity. The reason is that
parts in a system will tend, on average, to accumulate

variation and therefore tend to become more different from

each other. And to the extent that variation is or becomes
discontinuous, the number of part types is also expected to

increase. The underlying principle is what McShea and

Brandon (2010) call the zero-force evolutionary law
(ZFEL). Essentially, the ZFEL is a general statement of a

simple principle that underlies a number of widely

acknowledged evolutionary mechanisms, including the
tendency for parts to duplicate and differentiate, much

discussed in early twentieth century paleontology (Gregory

1934, 1935, and see below), the tendency for left-right
asymmetry to rise in bilaterians in the absence of devel-

opmental buffering, i.e., fluctuating asymmetry (Van Valen

1962), in the recently much-discussed tendency for dupli-
cate genes to spontaneously differentiate (Taylor and Raes

2004; Lynch 2007), and what is being called constructive

neutral evolution (Stoltzfus 1999, and see below; Gray
et al. 2010, and see below). The same principle also applies

to differentiation among individuals and among taxa, in

other words, to diversity, as well as to complexity (McShea
and Brandon 2010).

In the ZFEL view, there are two routes by which parts in

an organism can come to be different from one another.
One is obviously drift, the absence of constraint and

selection. The other is selection acting differently on each

part. For example, selection on a bipedal primate’s hip to
improve walking ability and simultaneous selection on the

shoulder to improve throwing ability will tend to make hip

and shoulder even more different from each other. Thus,
whenever parts vary to some degree independently, whe-

ther due to drift or to selection acting differently on each,

the ZFEL predicts increasing complexity. Two clarifica-
tions are needed here. First, the ZFEL is called a ‘‘zero-

force’’ principle because it describes what is expected in

the absence of selection. But seemingly oddly, the shoul-
der-hip example invoked selection. The explanation is that

the requirement for zero selection applies only to selection

acting on the differences among parts, on complexity itself,
favoring the advantages of differentness. This includes

selection favoring differentiation on account of the advanta-

ges of division of labor, as doubtless occurred in hominid
evolution in the differentiation the thumb from the other

fingers. And it also includes selection opposing differentia-

tion, as when it favors the similarity of the left and right legs. In
contrast, in the shoulder-hip example, the assumption is that

they become more different not because there is any particular

advantage to their being different but simply because they
change differently. In that case, complexity rises as the passive

result of independent change, not as a result of selection

favoring complexity. And it is the presence of any force
directly favoring or opposing complexity that the zero-force

clause in the ZFEL prohibits. The difference is analogous to
the ZFEL-like increase in diversity of locations that occurs

when a group of initially clustered individuals each goes his or

her own way. They spread out, each under the influence of his
or her own will, each person’s will an independent force. And

yet the zero-force condition is met if there is no force driving

them apart, if they are not fleeing each other.
Second, in the history of life there have obviously been

many instances when complexity did not increase and

many in which complexity decreased. In the ZFEL view,
what these instances point to is the existence of either

constraints on variation or selective opposition to differ-

entiation. In other words, the ZFEL reverses standard
intuitions on complexity: increase is easy. It is the expec-

tation. While stasis and decrease demand opposing con-

straints and forces (see McShea and Brandon 2010).
The principle is quite general, applicable not just to

biological systems but to computer simulations of evolu-

tion with reproduction and heredity, to replicating crystals
with memory for errors, and even to certain systems

without replication but that nevertheless have memory and

therefore retain variation (such as the surface of the moon,
which retains and accumulates complexity from meteorite

impacts).

Complexity is easy. It is spontaneous. No special
mechanism beyond the simple tendency for parts to

become different from each other is needed to account for

it. No selective advantage to complexity needs to be
invoked. Of course, selection can favor complexity, in

which case one would expect differentiation to occur even

more quickly, but a rapid rise in complexity is not, all by
itself, evidence for a selective advantage. Of course,

selection is necessary to explain adaptive complexity, to

explain why a system with many part types functions, why
it does something. But not to explain pure complexity, not

to explain the existence of many part types.

Early Complexity, Later Reduction

The examples discussed in the next two sections are both

systems that begin with many part types. They are

unquestionably adaptive, so clearly selection is not entirely

absent. But there is no evidence that they are highly
adaptive, at least not initially. More precisely, given the
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ZFEL tendency for parts to differentiate spontaneously,

there is no reason to think that their initial state—charac-
terized by high levels of differentiation—is more than

minimally functional.

What there is evidence for, and what we draw attention
to, is the reduction in complexity that followed, apparently

from selection for improved function, which in turn seems

to have required simplification. The resulting structure still
has considerable residual complexity. But that complexity

was arrived at not by accumulation, not by a build-up from
a simple starting condition, not by addition. Rather it was

produced by reduction, by building down from an even-

more-complex starting condition, by subtraction.

A Computational Example

The following examples are drawn from the Evolving
Cellular Automata (EvCA) project (Hordijk 2013). In this
project, a genetic algorithm was used to evolve cellular

automata to perform a non-trivial computational task, with

the aim of answering the general question: ‘‘How does
evolution produce sophisticated emergent computation in

systems composed of simple components limited to local

interactions? ’’
Cellular automata are a class of mathematical models of

complex systems that consist of a large number of rela-

tively simple components which are limited to local
interactions only. Yet they are able to produce a wide

variety of intricate patterns in their dynamical behavior

which are often considered to be emergent, i.e., they are not
‘‘programmed’’ into the simple rules and limited interac-

tions of the underlying individual components, but arise at

a higher, global level. A more detailed overview, mostly by
example, is given below. A genetic algorithm is a sto-

chastic search and optimization method that is modeled

after natural evolution, and is therefore also often used as
an actual computer simulation of an evolutionary process.

A more detailed description follows below. Combining

these two methods provides a useful and versatile com-
putational framework to study the evolution of complexity.

Cellular Automata

Cellular automata were introduced by John von Neumann

(after a suggestion by his colleague Stanislaw Ulam) to
study the logic of self-reproduction (von Neumann 1966;

Burks 1970). They were popularized with John Conway’s

‘‘Game of Life’’ (Gardner 1970). Because of their inter-
esting, sometimes even surprising dynamical behaviors,

cellular automata are often used as simple computer

models to study pattern formation, self-organization, and
emergence.

In its simplest form, a cellular automaton (CA) consists

of a linear array (or lattice) of identical ‘‘cells’’, each of
which can be in one of two states, say zero or one. At each

time step (or iteration), all cells simultaneously update their

state according to a fixed update rule, depending on their
current local ‘‘neighborhood configuration’’ which consists

of the cell itself, its left neighbor, and its right neighbor.

This update rule simply states for each possible neighbor-
hood configuration what the new state of the center cell

will be. Given two possible states and a three-cell neigh-
borhood, there are 23 = 8 possible neighborhood configu-

rations. An example of such an update rule is given in

Table 1.
This simplest form of a CA is known as an elementary

cellular automaton (ECA), and the particular update rule

shown in Table 1 is known as ECA 18. Note that the
bottom row (new state values) could have any configura-

tion of zeros and ones, giving rise to 28 = 256 possible

ECA update rules. Depending on which particular rule is
used, the system as a whole (the array of cells), can show

very different types of dynamical behaviors, from fixed

point or simple periodic, to very complex or even (seem-
ingly) random behavior. Figure 1 shows the dynamical

behavior of ECA 18 in a so-called space-time diagram,

with white representing the state zero and black repre-
senting the state one. In this diagram, space is horizontal

and time is vertical. The top row (100 cells wide) is the

initial configuration, which in this case was generated at
random. Each next row is the CA configuration after

applying the update rule to all cells, for a total of 100

iterations. Note that periodic boundary conditions are used,
i.e., the array of cells is considered to be circular so that the

left-most cell and the right-most cell are each others

neighbors.
Of course there are many possible variations on the

basic definition of elementary CAs. For example, more

than two states can be used, or a larger neighborhood size,
or a higher-dimensional array of cells (each of which

increases the size of the update rule as well as the total

number of possible rules). Other variations such as asyn-
chronous updates, non-uniform update rules, or random-

ness in the update rule can be included. The possibilities

are endless, and so are the range and complexity of cor-
responding dynamical behaviors.

As Fig. 1 shows, ECA 18 generates intricate patterns in

its global dynamical behavior which are at a larger scale
than just the local neighborhood configurations. These

patterns (and those in many other CAs) are sometimes very

Table 1 An example of an update rule known as elementary CA 18

Neighborhood 000 001 010 011 100 101 110 111

New state 0 1 0 0 1 0 0 0
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similar to patterns one observes in natural systems, such as

spiral waves, synchronous oscillations, or patterns on sea

shells, insect wings, or in animal fur. For this reason, CAs
are used frequently as models of (emergent) pattern for-

mation in natural systems (see, e.g., Vichniac 1984;

Margolus et al. 1986; Tamayo and Hartman 1988; Man-
neville et al. 1990; Boerlijst and Hogeweg 1991; Erment-

rout and Edelstein-Keshet 1993, and countless more recent

publications). In fact, they have even been used to model
patterns in road traffic (Simon and Nagel 1998) or social

systems (Brown and McBurnett 1996).

CAs are also capable of performing computations. For
example, they can perform simple arithmetic, generate

pseudo random numbers, and have been shown (in several
specific cases) to be capable of universal computation, i.e.,

they are (theoretically) equivalent in computing power to a

Universal Turing Machine (see, e.g., Mitchell 1998 and the
many references therein).

Imagine the following computational task for a cellular

automaton. Given an initial configuration (IC) of white and
black cells, the CA has to decide whether there are more

white cells or more black cells in the IC. If there are more

white cells, then the CA has to settle down, within a given
maximum number of iterations, to an all-white configura-

tion (i.e., all cells becoming white and staying in that

configuration in subsequent iterations). Otherwise it has to
settle down to an all-black configuration. This task is

known as density classification (i.e., the CA has to classify

the density of black cells in the IC as either below or above
0.5). Note that this is a non-trivial task for a CA, as it

requires global information processing, even though each

individual cell can only communicate locally (with its

direct neighbors). So, it is not just a matter of ‘‘reducing’’
any IC to an all-white or all-black configuration, but the

CA has to ‘‘choose’’ the correct answer state according to a

non-trivial property (from the perspective of an individual
cell) of the entire IC. This can be compared to, for exam-

ple, requiring the people in some village to come to a

(unanimous) agreement even if they can only communicate
with their direct neighbors.

Since there are only 256 elementary CAs, it is easy to
check whether any of them can perform this density clas-

sification task. However, none of them is capable of doing

this. Therefore, a variant of the elementary CA definition is
considered here, with the local neighborhood consisting of

a cell itself and its nearest three neighbors on either side

(called a radius of three), i.e., a neighborhood of seven
cells in total. This gives rise to an update rule with

27 = 128 entries (possible neighborhood configurations),

which means there are 2128 & 3.4 9 1038 possible update
rules. The question is then: Is there a two-state, radius-three

CA (update rule) that can perform the density classification

task, and if so, how does it perform the necessary global
information processing?

Genetic Algorithms

Given the large number of possible two-state, radius-three

CA update rules (too large to do an exhaustive search as
with the ECAs), it is useful to apply an automated method

that searches through this large space of possible CA rules

in an intelligent way to try and find reasonably good
solutions. One such method is a genetic algorithm.

A genetic algorithm (GA) (Holland 1975; Goldberg

1989; Mitchell 1996) tries to evolve better and better
solutions to a given (optimization) problem. The idea is to

maintain a population of candidate solutions, and create

subsequent generations by applying selection and recom-
bination on the individuals in the current population, thus

mimicking real evolution. Individuals in the population are

assigned a fitness value which indicates how well they
solve the given problem, and based on which they are then

selected to ‘‘mate’’ and create offspring. This simulated

evolutionary process generally leads to more and more fit
(i.e., better and better) solutions to the given problem. GAs

have been used widely and successfully to find good

approximate (near-optimal) solutions to problems for
which there is no analytical or efficient algorithmic way to

find the best possible solution [so-called NP-complete
problems (Garey and Johnson 1979)].

To apply a genetic algorithm, first the candidate solu-

tions need to be represented by a suitable genetic encoding.

In the case of two-state cellular automata, there is a natural
and straightforward encoding in the form of bit strings, i.e.,

Fig. 1 A space-time diagram of ECA 18. Space is horizontal (100
cells) and time is vertical (100 iterations), starting from a random
initial configuration in the top row. Periodic boundary conditions are
used
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strings of zeros and ones. Consider the update rule of ECA

18 as given in Table 1. This rule can simply be represented
by the bit string b = 01001000, i.e., the bit values in the

lower row in the table (which determine the new state of a

cell), given a lexicographical ordering of the possible
neighborhood configurations. In case of radius-three CAs,

this bit string will actually be of length 128 (as calculated

above). An initial GA population of candidate solutions is
now created by picking a certain number (say 100) of bit

strings of length 128 at random (out of the more than
3.4 9 1038 possible ones).

Next, a fitness function is needed. This function takes as

input an individual from the GA population (in this case a
bit string of length 128), translates it into the candidate

solution it represents (a CA update rule), and returns a

number indicating its fitness, i.e., how well it solves the
given problem. For example, in the density classification

task, the given CA update rule is iterated on, say, 100

random initial configurations (ICs), and the fraction of ICs
on which it gives the correct answer (i.e., settles down

correctly to all-white or all-black depending on the density

of black cells in the IC) is then taken as its fitness value.
This way, individuals in the GA population can be directly

compared to each other in terms of their fitness.

Once an initial population of candidate solutions with
assigned fitness values is created, new generations of

individuals are produced by selecting individuals from the

current population based on their fitness values, and
allowing them to create ‘‘offspring’’. Here, a very strong

form of selection is used, called elitism. The individuals in

the current population are ranked according to their fitness
values (from high to low), and the best 20 individuals are

copied to the next generation without modification. Next,

pairs of individuals are selected at random, regardless of
fitness, but with replacement, from these 20 elite individ-

uals to act as ‘‘parents’’ and create ‘‘offspring’’.

Offspring individuals are created by randomly recom-
bining the genetic material of a selected pair of parents

through one-point crossover. For each pair of parents, a

random crossover point is chosen somewhere between the
first and the last bit. The substrings behind this crossover

point are then swapped between the two parents. For

example, if we have the following pair of parents

b1 ¼ 00000000 and b2 ¼ 11111111

and the crossover point was randomly chosen, say, between
the third and fourth bit, the two offspring individuals will

look like

b
0

1 ¼ 00011111 and b
0

2 ¼ 11100000:

Note again that for the CA density classification problem
the bit strings are actually of length 128, but the crossover

mechanism is the same.

Finally, newly created offspring individuals are sub-

jected to random mutation, where a randomly chosen bit is
flipped, i.e., a zero is changed to a one or vice versa. For

example, given the first offspring individual b1
’ above, and

assuming the sixth bit was randomly chosen, it will be
mutated to

b
0

1 ¼ 00011011:

Again, for the CA density classification task there are
actually 128 bits, and in each mutation event two randomly

chosen bits are flipped.

This process of parent selection, crossover, and mutation
is repeated until a new population of individuals is pro-

duced, which will then replace the current population. This

whole process is then repeated for a given number of
generations. Here we have described the genetic algorithm

as used in the specific case of the CA density classification

task, but of course there are many ways in which a genetic
encoding, fitness function, selection, crossover, and muta-

tion can be implemented, depending on the given optimi-

zation problem, and the search performance of a GA can
depend strongly on these choices. But the main idea is to

search through (or sample) the (generally very large) space

of candidate solutions in an intelligent way to try and find
good (near-optimal) solutions to the given problem. The

GA performs such a search by simulating an evolutionary

process with the aim of evolving better and better solutions
over time. In short, a GA can generally be described as

follows.

1. Initialization: Create an initial population of candi-

date solutions at random, using an appropriate genetic

encoding.
2. Fitness: Calculate the fitness of each individual in the

current population, using an appropriate fitness

function.
3. Selection: Select individuals, based on their fitness

values, to act as parents (possibly using elitism to
preserve the current best individuals).

4. Crossover: From each next pair of selected parents,

create two offspring individuals through crossover.
5. Mutation: Apply mutation to the newly created

offspring individuals and place them in the new

population.
6. Replacement: Once the new population is filled up

with offspring individuals, replace the current popula-

tion with the new one and go back to step 2, until a
given number of generations is reached.

Note that in the evolving CA case, a bit string in the GA

population, representing a CA update rule, can be consid-
ered the ‘‘genotype’’, and the actual dynamical behavior of

the corresponding CA can be considered the ‘‘phenotype’’.

So, as in real evolution (to a large extent, at least), the
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evolution (random changes) happen at the level of the

genotype, but the fitness determination and selection hap-
pen at the level of the phenotype. In the CA case, the

genotype and phenotype can also be said to be linked

through a (possibly complex) ‘‘developmental and behav-
ioral process’’.

Evolving Cellular Automata with Genetic Algorithms

The first experiments on evolving cellular automata with a
genetic algorithm to perform the density classification task

were described in Packard (1988), and were later repeated

and examined in more detail in Mitchell et al. (1993,
1994a, b). The first real high-performance evolved CAs,

using sophisticated emergent computation, were found in a

series of subsequent experiments, as described in Das et al.
(1994), Crutchfield and Mitchell (1995). We repeated these

experiments, and obtained similar results. Here, we use

results from the best CA that was found in the experiments
reported in Das et al. (1994).

Figure 2 shows space-time diagrams of three CA rules

that occurred during the GA run that produced this overall

best CA. Each space-time diagram shows 149 cells across

(with periodic boundary conditions) and 149 iterations
down the page, starting from a random initial configura-

tion. These three CAs (simply called /1, /2, and /3 here)

were the best individuals in their respective generations
(16, 18, and 63) during the same GA run, and thus are part

of a single evolutionary sequence. All three CAs use a

similar ‘‘strategy’’ to solve the density classification task,
but the actual ‘‘implementation’’ of this strategy improves

significantly during their evolution, causing each next CA
to have a somewhat higher fitness (i.e., the correct answer

is given on a larger fraction of random ICs) than its

predecessor.
As Fig. 2 shows, all three CAs quickly settle down into

local regions of all-white (W), all-black (B), or a checker-

board (#) pattern. The boundaries between these regions
interact with each other, which leads to the annihilation or

creation of new stable regions and boundaries, until

eventually only one pattern (either W or B) is left as the
answer state. Following Hanson and Crutchfield (1992);

Crutchfield and Hanson (1993), these local, stable regions

are called regular domains, and the boundaries between

Fig. 2 Space-time diagrams of
/1 (top-left), /2 (top-right), and
/3 (bottom)
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them particles with their particle interactions. In Das et al.
(1994); Crutchfield and Mitchell (1995) it was argued that

it is these particles and their interactions which perform the

necessary global information processing to solve the den-
sity classification task. This was shown more formally and

convincingly in Hordijk et al. (1996, 1998), Hordijk (1999)

by modeling the dynamical behavior of evolved CAs at the
level of these emergent particles and their interactions.

Figure 3 shows the same three space-time diagrams as

in Fig. 2, but with the regular domains (the W, B, and #
patterns) filtered out. This filtering method, formally

described in Hanson and Crutchfield (1992), Crutchfield

and Hanson (1993), leaves an image that shows the parti-
cles and their interactions more clearly and explicitly.

Reduction in Complexity in Evolved CAs

A detailed description and analysis of the particle strategy

implemented by these evolved CAs can be found in Das
et al. (1994), Crutchfield and Mitchell (1995), Hordijk

et al. (1996, 1998), Hordijk (1999), but what is of interest

here is that there is reduction in complexity.

Consider the particle types in Figs. 2 and 3 labeled with
the letters a, b, and c, respectively. In this labeling, a

particle that forms a boundary between a black (B) domain

on the left and a white (W) domain on the right, is always
considered a particle of type a, even if it might look

somewhat different in the three (evolutionary related) CAs.

Similarly for particle type b always being a B# boundary
and particle type c always being a #W boundary.

The top row of Fig. 4 shows one of these particles (type

a) enlarged, as it occurs in the three evolved CAs: /1 (left),
/2 (center), and /3 (right), respectively. The bottom row

shows the corresponding filtered particles.

Recall that complexity is a function of number of part
types. At a small scale, each particle is made up entirely of

black and white squares and so at the scale of single

squares, all have the same complexity, namely two.
However, at a larger scale, each particle consists of sub-

sequences of black and white squares. Look closely at the

the particle’s initial structure in the bottom left of Fig. 4.
At the time points (rows) where its width is maximal, the

particle consists of two 3-square-length subsequences, a

BWB subsequence followed by a BBW subsequence. In

Fig. 3 Filtered space-time
diagrams of /1 (top-left), /2

(top-right), and /3 (bottom)
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other words, at its maximum width, it has two part types.
Compare this with the particle in the bottom middle figure.

At any time point (any row, because particle width is the

same everywhere), if we resolve the pattern into blocks
three squares long, it consists of a WBW subsequence

followed by another WBW subsequence. The two are

identical, so the number of part types is one. Sampling at
different resolutions, i.e., different subsequence lengths,

would yield different absolute part-type counts, but on
average the complexity of the particle at the bottom left is

greater than the bottom middle. In other words, maximum

particle width is an increasing function of number of part
types, and therefore a good proxy for complexity.

Complexity can also be understood in a temporal sense,

as the number of part types a particle contains over time. At
issue here is the temporal periodicity of a particle, the

number of unique sequences it passes through before

repeating, with each unique sequence understood as a part
type. The greater the temporal periodicity, the greater the

complexity. In biology, an example of an increase in

temporal complexity would be an increase in number of
stages, or morphs perhaps, in a life cycle.

In the space-time diagrams in Fig. 4, it is clear that

particle a becomes less complex as it evolves. From /1 to
/2, it goes from a maximum width of five cells to a

maximum width of four cells, and from a temporal peri-

odicity of three time steps to a temporal periodicity of one
(There is no further reduction, as the particle remains the

same in /3, 43 generations later).

Figure 5 shows similar images for the evolution of
particle type b. This particle type reduces its temporal

periodicity of two and maximum width of six to both a

temporal periodicity and maximum width of one (i.e.,
minimal complexity) in the two generations from /1 to /2.

As with particle type a, particle type b then also remains

the same during the remainder of the evolutionary process.
Finally, Fig. 6 shows the evolution of particle type

c. Here, the reduction in complexity happens in two stages.

First, its temporal periodicity reduces from four to two and
its maximum width from 11 to seven, going from /1 to /2.

Then there is a further reduction in /3 to both a temporal

periodicity and maximum width of one, where it reaches
the minimum possible complexity.

The reason we can consider each of these particle types
to be the same across the three different (but similar and

evolutionarily related) CAs /1, /2, and /3, is that they

form the same domain boundaries in each CA, and they
interact with each other in similar ways. For example,

particle type a forms a boundary between black and white

domains in each of the three CAs, and an interaction
between particle types b and c always produces a particle

of type a. So, even though the exact spatial and temporal

structure of a particular particle type can be different
between the three CAs (as shown in Figs. 4, 5, and 6),

‘‘functionally’’, i.e., in terms of the emergent particle

strategy for solving the computational task, they are the
same.

Fig. 4 Evolution of particle a. Top row original particle. Bottom row
filtered particle

Fig. 5 Evolution of particle b. Top row original particle. Bottom row
filtered particle

Fig. 6 Evolution of particle c. Top row original particle. Bottom row
filtered particle
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Selective Pressure for Reduced Complexity

This reduction in complexity of the particles is not arbi-
trary. In fact, there is selective pressure during the evolu-

tionary process for them to become less complex. This is a

consequence of the way the particles interact with each
other. Particles carry information about local densities of

black and white cells in different parts of the array of cells,

and particle interactions are the loci of exchange and
processing of this local information, either by annihilation

or by the creation of other particles. This way, an emergent

‘‘particle strategy’’ is implemented to perform the neces-
sary global information processing to successfully perform

the density classification task (Das et al. 1994; Crutchfield

and Mitchell 1995; Hordijk et al. 1996, 1998; Hordijk
1999).

Obviously, such a particle strategy will be more accurate

if the local information is transferred and processed effi-
ciently and without ambiguities. However, more complex

particles (i.e., a larger temporal periodicity and larger

maximum width) have a higher chance of being less effi-
cient and more ambiguous than less complex particles,

simply because they require more time and space to

interact with each other. Furthermore, there is a higher
chance that two interacting particles get ‘‘interrupted’’ by a

third, nearby particle if the particles are more complex than

what is minimally required.
Figure 7 shows an explicit example of this. The figure

on the left shows a detail of a space-time diagram for /3

where two particles (a W# and a #W boundary) collide and
annihilate each other, which results in the disappearance of

the # domain. Just to the left of this particle interaction is a

particle of type a, but as long as the distance between the
two-particle interaction on the right and the a particle on

the left is at least four cells, there is no interference.

The figure on the right shows a similar situation for /1.
However, here the different particles do interfere with each

other due to their higher complexity. If the distance

between the two-particle interaction on the right and the
a particle on the left is less than seven cells, this

interference will happen, resulting in the a particle to be

shifted over to the right, causing a bias towards black
domains in the implementation of the particle strategy. So,

instead of needing a minimum distance of only four cells, a

distance of at least seven cells is required to avoid inter-
ference, due to the higher complexity of both the a and the

c particle.

The more complex particles, and the consequently less
efficient implementation of the particle strategy in /1, is

one of the causes for its lower fitness for solving the
density classification task as compared to /3, where the

particles have evolved towards lower complexity resulting

in a more efficient particle strategy implementation. There
are, of course, also other causes for this difference in fit-

ness, but the above example illustrates why and how there

does indeed exist selective pressure for particles to become
less complex. In Hordijk (1999) several examples are

provided of how the difference between more complex and

minimally complex (‘‘ideal’’) particles can make the dif-
ference between a correct and an incorrect answer to the

density classification task on a given initial configuration.

A Different Computational Task

To show that the reduction in complexity in these CAs
evolved for the density classification task is not, somehow,

an artifact of the given task, we show a similar result with

evolved CAs for a different task, known as global syn-
chronization. In this task, the CA has to settle down, from

any initial configuration, to a synchronized oscillation

between an all-white configuration and an all-black con-
figuration. This task was first described and analyzed in

Das et al. (1995). We also repeated the experiments for this

task, and found similar results again. Here, we use results
from one of the best evolved CAs from our own

experiments.

Figure 8 shows space-time diagrams of two CAs that
occurred during one of the runs of the GA on the global

synchronization task (again using periodic boundary con-

ditions). The diagram on the left shows one of the best CAs
in generation 15 (/4) while the diagram on the right shows

one of the best CAs in the final generation (/5). As with the

density classification CAs, these CAs quickly settle down
into local regular domains and particles. In this case the

regular domains are the locally synchronized regions

(although possibly out of phase with each other) and the
regions with the repeating ‘‘L-shaped’’ pattern.

Figure 9 shows the same space-time diagrams, but with

the two regular domains filtered out. This again clearly
reveals the particles and their interactions. Two particle

types (d and e) are labeled in these diagrams. Particle type

d exists in /4, but not in /5. In fact, this particle is an
evolutionary ‘‘relic’’ from one of /4’s ancestors, but is not

Fig. 7 The two-particle interaction for /3 (left; no interference) and
/1 (right; interference)
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playing a useful role in the emergent particle strategy as it
evolved in /4. During the subsequent course of the evo-

lution, this particle disappears altogether. This shows a

reduction in complexity in terms of the number of particle
types. Furthermore, particle type e undergoes a drastic

reduction in complexity similar to the examples shown

above for the density classification CAs. These additional
results on a very different task show that reduction in

complexity under selective pressure indeed seems to be a

more general phenomenon.

A Biological Example

Certain biological systems also show early high levels of

complexity, with a subsequent loss of part types. The
sequence in Fig. 10 appeared in a 1935 paper by the

American paleontologist William Gregory. It purports to

show a trend toward reduction in number of skull bones in
the evolutionary transitions from fish to amphibian to

reptile to mammal. While it is not quite an evolutionary

trajectory—since it represents transitions among evolu-
tionary grades of skull organization, rather than an ances-

tor-descendant sequence—the trend has long been

acknowledged to be real. Indeed, a general pattern of

reduction in parts in evolution was recognized in Gregory’s
time and even before, notably by the paleontologist Samuel

Williston. In the early pages of his major work, Water
Reptiles of the Past and Present (quoted by Gregory in his
1935 paper), Williston wrote:

And it is also a law of evolution that the parts in an
organism tend toward reduction in number, with the

fewer parts greatly specialized in function, just as the

most perfect human machine is that which has the
fewest parts and each part most highly adapted to the

special function it has to subserve (Williston 1914,

p. 3).

In the case of the skull, the reduction was understood to

occur by the loss of bones or by the fusion of adjacent ones.

And as can be seen in Fig. 10, most of the skull bones are
different from each other, and thus represent different part

types, even in the earlier part of the sequence (Eusthe-
nopteron and Ichthyostega). Thus number of bones is well
correlated with number of bone types. (Bones that are

bilaterally symmetrical, or paired, are obviously quite

similar to each other, but they are typically tightly con-
nected in development and share the same evolutionary

fate, leaving the correlation intact.) Thus the loss of bones

amounts to a reduction in the complexity of the skull.

Fig. 8 Space-time diagrams of
/4 (left) and /5 (right)

Fig. 9 Filtered space-time
diagrams of /4 (left) and /5

(right)
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A Trend in Complexity, Driven by Selection

Almost a century after Williston framed his law of evolu-
tion, Christian Sidor took a new look at the trend using

current phylogenetic methods (Sidor 2001). He devised

what he called a skull simplification metric (SSM), a
function of the number of bone types present primitively,

and of new bones arising, reduced by the number of losses

and fusions. Sidor’s study was limited to a subgroup of the
tetrapods, the Synapsida, over 150 million years, from the

Upper Carboniferous through the Lower Jurassic. Fig-

ure 11a shows the trend in SSM for the entire group, plus
three modern mammals (top right). Figures 11b–f show the

trend for synapsid subgroups. The X axis is SSM, and the Y

axis is time—measured discretely as age rank—moving
upward toward the present. Notice that SSM is really a

complexity measure, increasing with rises in number of

bone types and decreasing with losses, but that Sidor has
reversed the usual protocol for plotting variables on the X

axis. Movement to the right is a decrease in complexity.

The figures reveal not just a trend—a decrease in mean
skull complexity (that is, a movement to the right)—but a

special kind of trend. The pattern of loss appears to be

‘‘driven,’’ that is, the product of a strong bias in evolution
of a sort that is commonly interpreted as a strong selection

pressure, one that acted on all or most lineages over the

group’s history (McShea 1994). The main evidence for a
drive is the decrease of the complexity maximum, in other

words the movement of the maximum away from the Y
axis and the opening up of an empty region on the left side

of the graph at high complexity values. It is as though a

strong selective wind were blowing to the right throughout
the SSM space, carrying the group like a plume of smoke

toward lower complexity.

This is not the only way a long-term trend in the mean could
have been produced. In a different world, we might still have

observed a trend but it might have been ‘‘passive’’ instead of

driven. That is, selection might have favored increases and
decreases in complexity equally often over most of the group’s

history while opposing increases in complexity above the

primitive maximum. In that case, mean complexity would still
have decreased, but the maximum complexity would not have

increased. In other words, the upper left portions of the graphs

in Fig. 11a would have been filled in with taxa, rather than
empty as they actually are. It is the emptiness of that region

that suggests a driven trend, rather than a passive one (McShea

1994). Interestingly, as Sidor observed, the same pattern is
repeated in the subgroups (Fig. 11b–f), suggesting that the

same drive toward reduced complexity was present over time

and over the whole complexity range.

Alternative Interpretations

A passive trend resulting from equal increase and decrease is

ruled out, but the data do not by themselves point decisively

to a strong selection pressure. Other mechanisms can

Fig. 10 Eusthenopteron is a Devonian lobe-finned fish. Ichthosteg-
opsis (now Ichthyostega) and Seymouria are Permian (labyrinthodont)
amphibians, Bradysaurus, Spenacodon, and Cynosuchoides (now

Cynosaurus) are Permian reptiles, and Notharctus is an Eocene
primate. From Gregory (1935)
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produce a similar pattern (Wagner 1996; Alroy 2001), for

example, a lower taxon extinction rate, or rising origination
rate, at lower complexity values. Also, intrinsic biases—

perhaps ease of bone loss in development relative to bone

gain—could produce a similar pattern (Sidor 2001). Still, a
selection pressure favoring reduced complexity is consistent

with expectations based on biomechanical considerations.

Sidor writes: ‘‘Because sutural joints permit some degree of
interbone mobility, reducing skull bone number . . . is a way

to solidify the skull against the forces induced by mastica-

tion. Continued selection pressure for stronger and more
rigid skulls could therefore produce the observed pattern’’

(Sidor 2001, p. 1430).

Does a decrease in SSM necessarily point to a decrease in
skull complexity? Recall that complexity is understood here

as number of part types, or where variation is continuous,

degree of differentiation. And further recall that the discrete

measure, part types, is a special case of the continuous, dif-

ferentiation. Both capture differentiation, but they are also to
some degree independent. In principle, part types can

increase while differentiation decreases, and vice versa.

Further, the continuous measure is the preferred one in that it
captures differentiation with higher resolution (McShea and

Brandon 2010). Thus part types might decrease while dif-

ferentiation increases or stays the same. And so there is one
reason to doubt Sidor’s finding. Adding to the doubt is

Gregory’s view that the loss of skull bones is accompanied
by an increase in specialization of those that remain, a pattern

that Gregory interpreted as an increase in skull complexity.

Human skulls, for example, have many fewer bones than fish
skulls but those few bones seemed to Gregory to be more

different from each other, on average, than fish skull bones

are from each other. However, this assessment is entirely
impressionistic. To demonstrate it, one would need a mor-

phometric study in which the bones of a skull are plotted in an

appropriate morphospace and the complexity of each skull
measured as a function of degree of disparity among the

bones, perhaps as the variance of their locations in mor-

phospace. In the meantime, Sidor’s finding based on part
types and the SSM is the state of the art.

Interestingly, Williston’s Law has been revisited recently

from an entirely different perspective. In a fascinating paper,
Esteve-Altava et al. (2012) examine the relationship in both

living and fossil tetrapods between skull-bone number and

degree of connectivity among bones. Connectivity was
understood as adjacency—bones in a skull are connected if

they contact each other—and degree of connectivity was

assessed using three different graph-theoretical metrics.
Esteve-Altava et al. found that for all three metrics, con-

nectivity increased as bone number decreased. They describe

connectivity as a superior measure of complexity, over-
coming the ‘‘limitations’’ of a simple count of bone types.

And they concluded that the real trend in skull evolution was

an increase in what they call complexity of organization,
rather a simplification trend. We have no argument with the

use of these metrics or with the results. Indeed they would

seem to offer a new and promising perspective on this very
old problem. But there is no contradiction between it and the

Sidor findings. The reason is that complexity in its non-

technical sense is a compound concept, consisting of many
logically independent aspects. There is complexity in the

sense of number of levels of organization (McShea 2001).

There is complexity in the sense of number of different
functions or capabilities (McShea 2000). And in the sense of

part types. And in the sense of number of different interac-

tions or connections (Esteve-Altava et al. 2012). And many
more (McShea 1996). What the Esteve-Altava finding means

is that complexity in one technical sense (connections) is

negatively correlated with complexity in another technical
sense (part types). And while there is something intriguing

Fig. 11 Data from Sidor (2001) showing the decline in complexity of
skulls in synapsids. The horizontal axis is his skull simplification
metric (SSM), which is directly related to complexity, and the vertical
axis is ‘‘age rank,’’ a proxy for time, with time moving upward toward
the present. a Data for all synapsids that Sidor examined; b–f filled
and half-filled circles correspond to data points for various synapsid
subgroups (see Sidor (2001) for the key to e)
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about that, something worth investigating further, there is no

contradiction. Regardless of what happened to complexity in
the sense of connectivity, it is still true, as Sidor demon-

strated, that skull complexity in the sense of the part types

decreased.

Conclusions and Discussion

The evolutionary trajectories in the computational and
skull examples are similar. The system starts with many

part types, at high complexity, and driven by selection it

loses complexity over time.
In the computational case, it is clear that the original

complexity of the system was excessive. Not only can we

point to ways in which the complexity of particles hindered
their ability to perform the tasks, density classification and

global synchronization, but we know that selection was

present and that the task did not change. Thus, the ancestral
more-complex particles were less fit than the less-complex

derived ones. The computational approach has the obvious

virtue that evolutionary trajectories and selective forces are
perfectly known. The approach also has some obvious

limitations. In particular, from a biological perspective, a

concern is that the mechanisms of change are imperfect
analogs of biological mechanisms. For example, ‘‘sexual

reproduction’’ in a genetic algorithm is very different from

sexual reproduction in real (biological) organisms and
populations. On the other hand, at a higher level of

abstraction, the dissimilarity among mechanisms may not

matter much. We have a system evolving to perform a
particular task and in doing so its trajectory spontaneously

took it from high complexity to low, which at least raises

the possibility that such a trajectory might be available to
any selection-driven evolutionary system, including bio-

logical systems. At worst, the computational case offers a

proof of concept, a demonstration that early excessive
complexity followed by adaptive reduction is a possible

route to adaptation. More optimistically, it suggests a route

that may be generally available to evolving systems.
It is also worth noting that the computational case pro-

vides a versatile testbed to perform additional experiments

and investigate the relevant issues in more detail. Experi-
ments can be repeated under different circumstances

(parameter settings) to study the influence of various fac-

tors on the occurrences of reduction in complexity. For
example, the selective pressure can be varied by changing

the selection operator in the genetic algorithm, or by

incorporating additional measures in the fitness function,
such as the number of iterations it takes the CA to get to an

answer state. Also, statistics can be collected on how often

a reduction in complexity is observed (over a number of
simulation runs), or how many generations it takes on

average for particles to reach a minimal level of com-

plexity while maintaining the same functionality. Such
experiments and statistics are difficult, if not impossible, to

perform and obtain in biological systems.

The skull simplification case cannot be interpreted with
the same confidence of course. Part type counts may not

reflect actual phenotypic disparity among skull elements.

The pattern of change suggests a selective driving force
toward simplification but there are other possibilities. And

if selection is in fact involved, we do not know for certain
that it was a single selection pressure acting more or less

continuously over hundreds of millions of years. The task,

so to speak, may have changed. It could be that the late-
Paleozoic tetrapod skull was optimal for tetrapods needs at

the time and those needs happened to require more part

types than skulls in later contexts. In that case, we cannot
say that the original complexity was excessive. On the

other hand, part-type counts do offer the best estimate

currently available of skull complexity, and they clearly
indicate a decrease in skull complexity. And the selective

story is buttressed by the known biomechanical advantages

of a less complex, more rigid skull, arguably advantageous
for chewing across a wide range of diets and ecological

contexts. This combined with the fact that the trend appears

to have been driven not only in the group as a whole but in
subgoups distributed over the group’s history, suggests a

common cause. At worst, the case for early excessive

complexity followed by adaptive reduction is plausible and
consistent with what is known.

Complexity by Subtraction

In the passage from the Origin quoted earlier, Darwin was

addressing the famous argument from design, as well
known in his time as in our own (Dembski and Ruse 2004).

The challenge was, and remains: how to explain the evo-

lution of structures with many parts from simpler ancestral
ones, especially in those cases in which the gradual addi-

tion of novel parts seems improbable, because it is hard to

imagine how the intermediates could have been functional.
The standard answer from evolutionary biology—from

Darwin to the present—has been that complexity did in fact

arise by stepwise addition of parts from a primitively
simple ancestral condition, and that the intermediates were

in fact functional, although importantly, the function of

these increasingly complex structures often changed in the
course of the process.

This answer could be right, and not just to explain the

occasional complex structure, but in general. We do not
know. Our point here is that there is an alternative, initial

high complexity followed by loss, complexity by subtrac-

tion. Its advantage as an explanation for complexity is that
the problem of nonfunctional intermediates does not arise.
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Consider a cartoon version of the problem, the construction

of a stone arch. Arches are stable and weight supporting
only when completed, when the keystone is finally lowered

into place. And so in the standard method of building an

arch, intermediates require scaffolding for support. But
there is another route, shown in Fig. 12. Start with a large

pile of stones of various shapes. (Suppose that stone types

are cheap and easy, available for free through some com-
mon physical process, just as part types are available via

the ZFEL.) Within a sufficiently large pile, weight sup-
porting structures are likely to be present. The engineer’s

job, then, is not to build an arch out of stones but to remove

the excess, the stones that do not participate in the already
existing arch (and perhaps to reshape the remaining

stones). The resulting structure is still complex, although

obviously reduced from what might be called the ‘‘exces-
sive complexity’’ of the structure it arose from.

The Trajectory of Complexity

Figure 13 contrasts the standard view of the trajectory of

complexity with our proposal here. In the standard view
(Fig. 13a), a structure starts simple and becomes more

complex with the gradual addition of new part types, rising

to some maximum that presumably marks optimal effi-
ciency or efficacy. Two features distinguish the alternative

(Fig. 13b). First, the process begins with a simple structure,

as in the standard view, but the rise in complexity is rel-
atively rapid. This is plausible, we argue, because com-

plexity in the sense of part types does not require an

extended process of variation and selection. Indeed, a rapid

rise in complexity is the expectation in any system in which
selection is absent or relaxed, or in which selection acts to

some degree independently on each part (the conditions for

the ZFEL). Second, as the graph shows, complexity
declines from its initial high, leveling off at a point where

complexity is lower than its initial maximum but still

higher than the ancestral starting point, again presumably
at a point corresponding to some efficiency or efficacy

optimum.

The route to complex functionality that we propose is
not entirely new. It may be present implicitly in the liter-

ature in biology on self-organization (e.g. Kauffman 1996).

Consider Depew and Weber’s reply to the intelligent-
design argument, where they write (in a footnote) of ‘‘the

emergence of machines that involve some self-assembly,

combined with paring away of less-than-fully-efficient
parts.’’ (Weber and Depew 2004, p. 186). Also, a critical

component of the route we propose is implicit in the cur-

rent molecular evolution literature, in the notion that gene
duplication commonly leads to neutral differentiation and

therefore to a spontaneous rise in number of gene part

types, on which selection acts to produce function (what is
now called either neofunctionalization or subfunctional-

ization) (Lynch 2007). Finally, complexity by subtraction

shares an intuition that is present in the recent literature on
constructive neutral evolution (Stoltzfus 1999), the idea

that, as Gray et al. write, ‘‘Many of the cell’s macromo-

lecular machines appear gratuitously complex, comprising
more components than their basic functions seem to

demand’’ (Gray et al. 2010, p. 920).

We conclude by noting a perhaps-obvious consequence
of the complexity-by-subtraction view and by posing some

questions, rhetorically, in the hope of inspiring others to

pursue answers. The consequence is that, if complexity-by-
subtraction is the rule in evolution, then the complexity of

functional biological devices is merely residual. And that

residual complexity is to some degree a secondary effect of
the route taken, not necessarily favored in its own right.

Indeed, what is favored is streamlined simplicity. If func-
tional structures are complex, it may be in part because

they start that way, because initial complexity is easy.

The questions we raise have to do with the generality of
the route we propose. First, there is the question of how

Fig. 12 Complexity by
subtraction. From left to right:
1 Some process—perhaps the
ZFEL—produces part-type
excess. 2 Functional structures
are present among a subset of
the parts. 3 & 4 Selection pares
away the excess

Fig. 13 Two views of complexity over time in evolution: a standard
(left), monotonic increase toward adaptive peak; b complexity by
subtraction (right), rapid increase to adaptive excess, followed by
decrease toward optimum
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commonly it occurs in evolution, and then, whether and

how commonly it occurs in non-biological systems. Do
machines typically evolve along similar lines, starting with

excess complexity and becoming simpler as they are

improved? Do languages start complex and become more
streamlined over time, under pressure perhaps for fast and

efficient communication? How about the complexity of

human institutions, such as businesses, that experience
pressures at least analogous to natural selection for

improved functionality? Do they follow a similar trajec-
tory? As in the evolutionary case, a case-study approach of

the sort we attempt here would be useful as a first step.

What is needed then—for the evolutionary case as well—is
a broader and more systematic study, to discover whether

or the extent to which complexity-by-subtraction occurs

generally.

Acknowledgments The main ideas described in this paper origi-
nated at a catalysis meeting at the National Evolutionary Synthesis
Center (NESCent) in Durham, NC, USA. They were developed fur-
ther and finalized into the current paper during a subsequent short-
term research visit of WH at, and supported by, NESCent. We thank
Robert Brandon for suggesting the apt and evocative phrase ‘‘com-
plexity by subtraction.’’ Finally, one of us (DM) would like to thank
Benedikt Hallgrimsson for discussions decades ago, discussions that
turned out to be foundational in the development of the ZFEL.

References

Adamowicz, S. J., Purvis, A., & Wills, M. A. (2008). Increasing
morphological complexity in multiple parallel lineages of the
Crustacea. Proceedings of the National Academy of Sciences,
105, 4786–4791.

Alroy, J. (2001). Understanding the dynamics of trends within
evolving lineages. Paleobiology, 26, 319–329.

Boerlijst, M., & Hogeweg, P. (1991). Self-structuring and selection: Spiral
waves as a substrate for prebiotic evolution. In C. G. Langton,
C. Taylor, J. D. Farmer & S. Rasmussen (Eds.), Artifial life II
(pp. 55–276). Reading: Addison-Wesley.

Bonner, J. T. (1988). The evolution of complexity by means of natural
selection. Princeton: Princeton University Press.

Brown, T. A., & McBurnett, M. D. (1996). The emergence of political
elites. In M. Coombs & M. Sulcoski (Eds.), Proceedings of the
International Workshop on Control Mechanisms for Complex
Systems (pp. 143–161).

Buchholtz, E. A., & Wolkovich, E. H. (2005). Vertebral osteology
and complexity in Lagenorhynchus acutus. Marine Mammal
Science, 21, 411–428.

Burks, A. W. (Ed) (1970). Essays on cellular automata. Urbana:
University of Illinois Press.

Cisne, J. L. (1974). Evolution of the world fauna of aquatic free-living
arthropods. Evolution, 28, 337–366.

Crutchfield, J. P., & Hanson, J. E. (1993). Turbulent pattern bases for
cellular automata. Physica D, 69, 279–301.

Crutchfield, J. P., & Mitchell, M. (1995). The evolution of emergent
computation. Proceedings of the National Academy of Sciences,
92(23), 10742–10746.

Darwin, C. (1859). On the origin of species. London: J. Murray.
Darwin, C. (1862). On the various contrivances by which British and

foreign orchids are fertilised by insects, and on the food effects
of intercrossing. London: J. Murray.

Das, R., Mitchell, M., Crutchfield, J. P. (1994). A genetic algorithm
discovers particle-based computation in cellular automata. In Y.
Davidor, H. P. Schwefel & R. Manner (Eds.), Parallel problem
solving from nature—PPSN III (pp. 344–353). Berlin: Springer.

Das, R., Crutchfield, J. P., Mitchell, M., & Hanson, J. E. (1995).
Evolving globally synchronized cellular automata. In L. J. Esh-
elman (Ed.), Proceedings of the Sixth International Conference
on Genetic Algorithms (pp. 336–343). Los Altos: Morgan
Kaufmann.

Dembski, W. A., & Ruse, M. (Eds.) (2004). Debating design.
Cambridge: Cambridge University Press.

Doolittle, W. F. (2012). A ratchet for protein complexity. Nature, 481,
270–271.

Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata
approaches to biological modeling. Journal of Theoretical
Biology, 160, 97–133.

Esteve-Altava, B., Marugán-Lobón, J., Botella, H., & Rasskin-Gutman,
D. (2012). Structural constraints in the evolution of the tetrapod
skull complexity: Willistons Law revisited using network models.
Evolutionary Biology. doi:10.1007/s11692-012-9200-9.

Finnigan, G. C., Hanson-Smith, V., Stevens, T. H., & Thornton, J. W.
(2012). Evolution of increased complexity in a molecular
machine. Nature, 481, 360–364.

Gardner, M. (1970). The fantastic combinations of John Conway’s
new solitaire game ‘‘life’’. Scientific American, 223(120), 123.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
A guide to the theory of NP-completeness. New York:
W. H. Freeman.

Goldberg, D. E. (1989) Genetic algorithms in search, optimization,
and machine learning. Reading: Addison-Wesley.
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