Publications
Modeling self and others
Living machines: A handbook of research in biomimetics and biohybrid systems, , , 2018
Status: Published
Citations:
Cite: [bibtex]

Abstract: The body plan of an animal or robot constrains and provides opportunities for how it generates behavior. For example a legged robot will require a more complex control policy than a wheeled robot, but more energy-efficient movement may be possible by exploiting the momentum of the leg during the swing phase (Collins et al. 2005). This chapter explores one particular relationship between a robot's body plan and adaptive behavior: the ability to learn and mentally simulate the topology of its own (or another's) morphology. It will be shown that such ability enabled a robot to recover from unanticipated mechanical damage (Bongard et al. 2006). In another experiment it was shown that this ability to create self-models can be used to find appropriate teachers: the robot creates models of other robots in its environment; ignores those that are morphologically different from itself; and learns …
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).