Publications
Rank Aggregation for Course Sequence Discovery
Studies in Computational Intelligence, , , 2017
Status: Published
Citations:
Cite: [bibtex]

Abstract: This work extends the rank aggregation framework for the setting of discovering optimal course sequences at the university level, and contributes to the literature on educational applications of network analysis. Each student provides a partial ranking of the courses taken throughout her or his undergraduate career. We build a network of courses by computing pairwise rank comparisons between courses based on the order students typically take them, and aggregate the results over the entire student population, to obtain a proxy for the rank offset between pairs of courses. We extract a global ranking of the courses via several state-of-the art algorithms for ranking with pairwise noisy information, including SerialRank, Rank Centrality, and the recent SyncRank based on the group synchronization problem. We test this application of rank aggregation on 15 years of student data from the Department of Mathematics at the University of California, Los Angeles (UCLA). Furthermore, we experiment with the above approach on different subsets of the student population conditioned on final GPA, and highlight several differences in the obtained rankings that uncover potential hidden pre-requisites in the Mathematics curriculum.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).