Publications
Life on the Edge: Unraveling Policies into Configurations
ANCS '17, Proceedings of the Symposium on Architectures for Networking and Communications Systems , 178-190, 2017
Status: Published
Citations:
Cite: [bibtex]

Abstract: Current frameworks for network programming assume that the network comprises a set of homogenous devices that can be rapidly reconfigured in response to changing policies and network conditions. Unfortunately, these assumptions are incompatible with the realities of modern networks, which contain legacy devices that offer diverse functionality and can only be reconfigured slowly. Additionally, network service providers need to walk a fine line between providing flexibility to users, and maintaining the integrity and reliability of their core networks. These issues are particularly evident in optical networks, which are used by ISPs and WANs and provide high bandwidth at the cost of limited flexibility and long reconfiguration times. This paper presents a different approach to implementing high-level policies, by pushing functionality to the edge and using the core merely for transit. Building on the NetKAT framework and leveraging linear programming solvers, we develop techniques for analyzing and transforming policies into configurations that can be installed at the edge of the network. Furthermore, our approach can be extended to incorporate constraints that are crucial in the optical domain, such as path constraints. We develop a working implementation using off-the-shelf solvers and evaluate our approach on realistic optical topologies.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).