Publications
Inattention and reaction time variability are linked to ventromedial prefrontal volume in adolescents
Biological psychiatry, 82, 660-668, 2017
Status: Published
Citations:
Cite: [bibtex]

Abstract: Background
Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability—an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression.
Methods
Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated.
Results
Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology.
Conclusions
This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).