Publications
Confirming automatically recognized handwritten answers
US Patent, 9665786, , 2017
Status: Published
Citations:
Cite: [bibtex]

Abstract: An image is received that contains handwritten characters as answers to an inquiry. An automatic character recognition process is performed on the image to generate initially recognized characters from the handwritten characters. The initially recognized characters of an incorrect answer to a question of the inquiry are analyzed to automatically identify alternative recognized characters of the incorrect answer. Then, it can be determined whether one or more of the alternative recognized characters, when substituted in place of the initially recognized characters of the incorrect answer, change the incorrect answer to a correct answer to the question. If the alternative recognized characters substituted in place of the initially recognized characters in the correct answer exceed a minimum character recognition confidence value, the incorrect answer is changed to the correct answer to modify the initially scored answers to modified scored answers, and such are output.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).