Publications
Benchmarking and validation of cascading failure analysis tools
IEEE Transactions on Power Systems, 31, 4887-4900, 2016
Status: Published
Citations:
Cite: [bibtex]

Abstract: Cascading failure in electric power systems is a complicated problem for which a variety of models, software tools, and analytical tools have been proposed but are difficult to verify. Benchmarking and validation are necessary to understand how closely a particular modeling method corresponds to reality, what engineering conclusions may be drawn from a particular tool, and what improvements need to be made to the tool in order to reach valid conclusions. The community needs to develop the test cases tailored to cascading that are central to practical benchmarking and validation. In this paper, the IEEE PES working group on cascading failure reviews and synthesizes how benchmarking and validation can be done for cascading failure analysis, summarizes and reviews the cascading test cases that are available to the international community, and makes recommendations for improving the state of the art.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).