Publications


MixItUp Demo - Toggle Filtering AND Logic



On the growth and structure of social systems following preferential attachment

Université Laval, , , 2014


Status: Published

Citations:

Cite: [bibtex]


My Image

Abstract: Social systems are notoriously unfair. In this thesis, we focus on the distribution and structure of shared resources and activities. Through this lens, their extreme inequalities tend to roughly follow a universal pattern known as scale independence which manifests itself through the absence of a characteristic scale. In physical systems, scale-independent organizations are known to occur at critical points in phase transition theory. The position of this critical behaviour being very specific, it is reasonable to expect that the distribution of a social resource might also imply specific mechanisms. This analogy is the basis of this work, whose goal is to apply tools of statistical physics to varied social activities. As a first step, we show that a system whose resource distribution is growing towards scale independence is subject to two constraints. The first is the well-known preferential attachment principle, a mathematical principle roughly stating that the rich get richer. The second is a new general form of delayed temporal scaling between the population size and the amount of available resource. These constraints pave a precise evolution path, such that even an instantaneous snapshot of a distribution is enough to reconstruct its temporal evolution and predict its future states. We validate our approach on diverse spheres of human activities ranging from scientific and artistic productivity, to sexual relations and online traffic. We then broaden our framework to not only focus on resource distribution, but to also consider the resulting structure. We thus apply our framework to the theory of complex networks which describes the connectivity structure of social, technological or biological systems. In so doing, we propose that an important class of complex systems can be modelled as a construction of potentially infinitely many levels of organization all following the same universal growth principle known as preferential attachment. We show how real complex networks can be interpreted as a projection of our model, from which naturally emerge not only their scale independence, but also their clustering or modularity, their hierarchy, their fractality and their navigability. Our results suggest that social networks can be quite simple, and that the apparent complexity of their structure is largely a reflection of the complex hierarchical nature of our world.



[edit database entry]
Stacks Image 525289
Joshua Bongard - Department of Computer Science, Associate Professor

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.


  • Stacks Image 525371
    Josh Bongard, Victor Zykov, Hod Lipson. Resilient Machines Through
    Continuous Self-Modeling.
    Science 314, 1118 (2006). [Journal Page]
  • Stacks Image 525379
    Joey Anetsberger and Josh Bongard. Robots can ground crowd-proposed symbols by forming theories of group mind. Proceedings of the Artificial Life Conference 2016. [Link to Proceedings]
  • Stacks Image 525375
    Sam Kriegman, Nick Cheney, and Josh Bongard. How morphological development can guide evolution. arXiv 2017. [arXiv]


Stacks Image 525306
Chris Danforth -Department of Mathematics and Statistics, Flint Professor of Mathematical, Natural, and Technical Sciences

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

  • Stacks Image 525319
    Peter Sheridan Dodds , Kameron Decker Harris, Isabel M. Kloumann, Catherine A. Bliss, Christopher M. Danforth. Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter. PLoS ONE 2011. [Journal Page].
  • Stacks Image 525314
    Lewis Mitchell , Morgan R. Frank, Kameron Decker Harris, Peter Sheridan Dodds, Christopher M. Danforth. The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place. PLoS ONE 2013. [Journal Page].
  • Stacks Image 525310
    Andrew G Reece and Christopher M Danforth. Instagram photos reveal predictive markers of depression. EPJ Data Science 2017. [Journal Page].


Stacks Image 525327
Laurent Hébert-Dufresne - Assistant Professor, Computer Science

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

  • Stacks Image 525331
    Laurent Hébert‐Dufresne Adam F. A. Pellegrini Uttam Bhat Sidney Redner Stephen W. Pacala Andrew M. Berdahl. Edge fires drive the shape and stability of tropical forests. Ecology Letters 2018. [Journal Page]
  • Stacks Image 525335
    Samuel V. Scarpino, Antoine Allard, Laurent Hébert-Dufresne. The effect of a prudent adaptive behaviour on disease transmission. Nature Physics 2016. [Journal Page]
  • Stacks Image 525339
    Laurent Hébert-Dufresne, Joshua A. Grochow, Antoine Allard. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition. Nature Scientific Reports 2016. [Journal Page]


Stacks Image 525346
Paul Hines - School of Engineering, Associate Professor

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

  • Stacks Image 525350
    Paul D. H. Hines, Ian Dobson, Pooya Rezaei. Cascading Power Outages Propagate Locally in an Influence Graph That is Not the Actual Grid Topology. IEEE Transactions on Power Systems ( Volume: 32, Issue: 2, March 2017 ). [Journal Page]
  • Stacks Image 525354
    Mert Korkali, Jason G. Veneman, Brian F. Tivnan, James P. Bagrow & Paul D. H. Hines. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence. Scientific Reports volume 7, Article number: 44499 (2017. [Journal Page]
  • Stacks Image 525358
    Pooya Rezaei, Paul D. H. Hines, Margaret J. Eppstein. Estimating Cascading Failure Risk With Random Chemistry. IEEE Transactions on Power Systems ( Volume: 30, Issue: 5, Sept. 2015 ). [Journal Page]


Stacks Image 525386
James Bagrow - Assistant Professor, Department of Mathematics and Statistics

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).

  • Stacks Image 525390
    Y.-Y. Ahn, J. P. Bagrow and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature, 466: 761-764 (2010). [Journal Page].
  • Stacks Image 525394
    M. R. Frank, J. R. Williams, L. Mitchell, J. P. Bagrow, P. S. Dodds, C. M. Danforth. Constructing a taxonomy of fine-grained human movement and activity motifs through social media. In preparation. (2015). [Journal Page].
  • Stacks Image 525398
    J. P. Bagrow and L. Mitchell. The quoter model: a paradigmatic model of the social flow of written information. To appear, Chaos (2018). [Journal Page].