Publications
Plug-in hybrid electric vehicle research project: phase two report
University of Vermont Transportation Research Center Report, , , 2010
Status: Published
Citations:
Cite: [bibtex]

Abstract: This report contains five substantive sections describing plug-in hybrid electric vehicle (PHEV) related research conducted over an 18-month period by faculty and graduate students at the University of Vermont. Funding for these separate but related projects was provided by the Transportation Research Center, electric utilities, and Vermont State Agency partners. Section 1.2 of this report presents a literature review of prior studies regarding the proportion of miles driven under gasoline and electric power respectively, the resulting gasoline displacement and net change in greenhouse gas (GHG) emissions associated with PHEV operation, the generating capacity available to charge PHEVs and vehicle lifetime ownership costs. Section 2 is an analysis of state and federal policies to enhance the economic competitiveness of PHEVs. Two models of the impact of electricity demand for PHEV charging are described in Sections 3 and 4. The first of these models looks at the impact of this additional electricity demand on carbon allowance prices and generating costs under an electricity sector only cap-and-trade program, while the second explores its impact on medium voltage distribution circuits. Section 5 estimates the economic potential for bidirectional interfacing between vehicles and the grid, a concept known as vehicle-to-grid or V2G, in Vermont.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).