Publications
Utilizing Artificial Neural Networks to backtrack source location
Preprint, 2006
Status: Published
Citations:
Cite: [bibtex]

Abstract: Determining the location of the contaminant source is important for improving remediation and site management decisions at many contaminated groundwater sites. At large sites, numerical flow and transport models have been developed that use historical measurement data for calibration. A well-calibrated model is useful for predicting plume migration and other management purposes; however, it is difficult to back out the source with these forward flow and transport models. We present a novel technique utilizing Artificial Neural Networks (ANNs) to backtrack source location and earlier plume concentrations from recent plume information. For proof-of-concept, two tracer tests (a non-point-source and a point-source) were performed in a large-scale (10'×14'×6') groundwater physical model. The physics-based flow and transport model (MODFLOW 2000 and MT3DMS) was calibrated using the data from the non-point-source tracer test and validated using the point source tracer test data. ANNs (e.g. counterpropagation) were trained using the calibrated model predictions and compared to actual data. Results show this to be a promising method for determining earlier plume and source locations.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).