Publications
Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not
Journal of Computational Science, , , 2017
Status: Published
Citations:
Cite: [bibtex]

Abstract: Of basic interest is the quantification of the long term growth of a language's lexicon as it develops to more completely cover both a culture's communication requirements and knowledge space. Here, we explore the usage dynamics of words in the English language as reflected by the Google Books 2012 English Fiction corpus. We critique an earlier method that found decreasing birth and increasing death rates of words over the second half of the 20th Century, showing death rates to be strongly affected by the imposed time cutoff of the arbitrary present and not increasing dramatically. We provide a robust, principled approach to examining lexical evolution by tracking the volume of word flux across various relative frequency thresholds. We show that while the overall statistical structure of the English language remains stable over time in terms of its raw Zipf distribution, we find evidence of an enduring ‘lexical turbulence’: The flux of words across frequency thresholds from decade to decade scales superlinearly with word rank and exhibits a scaling break we connect to that of Zipf's law. To better understand the changing lexicon, we examine the contributions to the Jensen-Shannon divergence of individual words crossing frequency thresholds. We also find indications that scholarly works about fiction are strongly represented in the 2012 English Fiction corpus, and suggest that a future revision of the corpus should attempt to separate critical works from fiction itself.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).