Publications
Parameterizing Pair Approximations for Takeover Dynamics
Proceedings of the 10th annual conference companion on Genetic and evolutionary computation, , 2199-2204, 2008
Status: Published
Citations:
Cite: [bibtex]

Abstract: Pair approximations have often been used to predict equilibrium conditions in spatially-explicit epidemiological and ecological systems. In this work, we investigate whether this method can be used to approximate takeover dynamics in spatially structured evolutionary algorithms. Our results show that the pair approximation, as originally formulated, is insufficient for approximating pre-equibilibrium dynamics, since it does not properly account for the interaction between the size and shape of the local neighborhood and the population size. After parameterizing the pair approximation to account for these influences, we demonstrate that the resulting system of differential equations can serve as a general and rapid approximator for takeover dynamics on a variety of spatially-explicit regular interaction topologies with varying population sizes. Strengths, limitations, and potential applications of the pair approximation to evolutionary computation are discussed.
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).