Publications
Analysis of a threshold model of social contagion on degree-correlated networks
Physical Review E, 79, 066115, 2009
Status: Published
Citations: 24
Cite: [bibtex]

Abstract: We analytically determine when a range of abstract social contagion models permit global spreading from a single seed on degree-correlated, undirected random networks. We deduce the expected size of the largest vulnerable component, a network's tinderbox-like critical mass, as well as the probability that infecting a randomly chosen individual seed will trigger global spreading. In the appropriate limits, our results naturally reduce to standard ones for models of disease spreading and to the condition for the existence of a giant component. Recent advances in the distributed, infinite seed case allow us to further determine the final size of global spreading events, when they occur. To provide support for our results, we derive exact expressions for key spreading quantities for a simple yet rich family of random networks with bimodal degree distributions.
**May not be in order
[edit database entry]

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).