Publications


MixItUp Demo - Toggle Filtering AND Logic



Scaling, universality, and geomorphology

Annual Review of Earth and Planetary Sciences, 28, 571-610, 2000


Status: Published

Citations: 158

Cite: [bibtex]


My Image

Abstract: Theories of scaling apply wherever there is similarity across many scales. This similarity may be found in geometry and in dynamical processes. Universality arises when the qualitative character of a system is sufficient to quantitatively specify its essential features, such as the exponents that characterize scaling laws. Within geomorphology, two areas where the concepts of scaling and universality have found application are the geometry of river networks and the statistical structure of topography. We first provide a pedagogical review of scaling and universality. We then describe recent progress made in applying these ideas to networks and topography. This overview then leads to a synthesis of some widely scattered ideas that attempts a classification of surface and network properties based on generic mechanisms and geometric constraints. We also briefly review how these ideas may be applied to problems in sedimentology ranging from the structure of submarine canyons, the size distribution of turbidite deposits, and the origin of stromatolites.


**May not be in order

[edit database entry]
Stacks Image 525289
(null)

  • Stacks Image 525371
    (null)
  • Stacks Image 525379
    (null)
  • Stacks Image 525375
    (null)


Stacks Image 525306
(null)

  • Stacks Image 525319
    (null)
  • Stacks Image 525314
    (null)
  • Stacks Image 525310
    (null)


Stacks Image 525327
(null)

  • Stacks Image 525331
    (null)
  • Stacks Image 525335
    (null)
  • Stacks Image 525339
    (null)


Stacks Image 525346
(null)

  • Stacks Image 525350
    (null)
  • Stacks Image 525354
    (null)
  • Stacks Image 525358
    (null)


Stacks Image 525386
(null)

  • Stacks Image 525390
    (null)
  • Stacks Image 525394
    (null)
  • Stacks Image 525398
    (null)