Publications


MixItUp Demo - Toggle Filtering AND Logic



Unified view of scaling laws for river networks

Physical Review E, 59, 4865-4877, 1999


Status: Published

Citations: 102

Cite: [bibtex]


My Image

Abstract: Scaling laws that describe the structure of river networks are shown to follow from three simple assumptions. These assumptions are: (1) river networks are structurally self-similar, (2) single channels are self-affine, and (3) overland flow into channels occurs over a characteristic distance (drainage density is uniform). We obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two of these exponents are independent. We further demonstrate that the two predominant descriptions of network structure (Tokunaga's law and Horton's laws) are equivalent in the case of landscapes with uniform drainage density. The results are tested with data from both real landscapes and a special class of random networks.


**May not be in order

[edit database entry]
Stacks Image 525289
(null)

  • Stacks Image 525371
    (null)
  • Stacks Image 525379
    (null)
  • Stacks Image 525375
    (null)


Stacks Image 525306
(null)

  • Stacks Image 525319
    (null)
  • Stacks Image 525314
    (null)
  • Stacks Image 525310
    (null)


Stacks Image 525327
(null)

  • Stacks Image 525331
    (null)
  • Stacks Image 525335
    (null)
  • Stacks Image 525339
    (null)


Stacks Image 525346
(null)

  • Stacks Image 525350
    (null)
  • Stacks Image 525354
    (null)
  • Stacks Image 525358
    (null)


Stacks Image 525386
(null)

  • Stacks Image 525390
    (null)
  • Stacks Image 525394
    (null)
  • Stacks Image 525398
    (null)