Publications
The Lexicocalorimeter: Gauging public health through caloric input and output on social media
PLoS ONE, 12, e0168893, 2017
Status: Published
Citations:
Cite: [bibtex]

Abstract: We propose and develop a Lexicocalorimeter: an online, interactive instrument for measuring the “caloric content” of social media and other large-scale texts. We do so by constructing extensive yet improvable tables of food and activity related phrases, and respectively assigning them with sourced estimates of caloric intake and expenditure. We show that for Twitter, our naive measures of “caloric input”, “caloric output”, and the ratio of these measures are all strong correlates with health and well-being measures for the contiguous United States. Our caloric balance measure in many cases outperforms both its constituent quantities; is tunable to specific health and well-being measures such as diabetes rates; has the capability of providing a real-time signal reflecting a population’s health; and has the potential to be used alongside traditional survey data in the development of public policy and collective self-awareness. Because our Lexicocalorimeter is a linear superposition of principled phrase scores, we also show we can move beyond correlations to explore what people talk about in collective detail, and assist in the understanding and explanation of how population-scale conditions vary, a capacity unavailable to black-box type methods.
Most recent press:

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.
Continuous Self-Modeling. Science 314, 1118 (2006). [Journal Page]

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).