Publications


MixItUp Demo - Toggle Filtering AND Logic



IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

2016


Status: Published

Citations:

Cite: [bibtex]


My Image

Abstract: Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.



[edit database entry]
Stacks Image 525289
Joshua Bongard - Department of Computer Science, Associate Professor

Bongard's work focuses on understanding the general nature of cognition, regardless of whether it is found in humans, animals or robots. This unique approach focuses on the role that morphology and evolution plays in cognition. Addressing these questions has taken him into the fields of biology, psychology, engineering and computer science.


  • Stacks Image 525371
    Josh Bongard, Victor Zykov, Hod Lipson. Resilient Machines Through
    Continuous Self-Modeling.
    Science 314, 1118 (2006). [Journal Page]
  • Stacks Image 525379
    Joey Anetsberger and Josh Bongard. Robots can ground crowd-proposed symbols by forming theories of group mind. Proceedings of the Artificial Life Conference 2016. [Link to Proceedings]
  • Stacks Image 525375
    Sam Kriegman, Nick Cheney, and Josh Bongard. How morphological development can guide evolution. arXiv 2017. [arXiv]


Stacks Image 525306
Chris Danforth -Department of Mathematics and Statistics, Flint Professor of Mathematical, Natural, and Technical Sciences

Danforth is an applied mathematician interested in modeling a variety of physical, biological, and social phenomenon. He has applied principles of chaos theory to improve weather forecasts as a member of the Mathematics and Climate Research Network, and developed a real-time remote sensor of global happiness using messages from Twitter: the Hedonometer. Danforth co-runs the Computational Story Lab with Peter Dodds, and helps run UVM's reading group on complexity.

  • Stacks Image 525319
    Peter Sheridan Dodds , Kameron Decker Harris, Isabel M. Kloumann, Catherine A. Bliss, Christopher M. Danforth. Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter. PLoS ONE 2011. [Journal Page].
  • Stacks Image 525314
    Lewis Mitchell , Morgan R. Frank, Kameron Decker Harris, Peter Sheridan Dodds, Christopher M. Danforth. The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place. PLoS ONE 2013. [Journal Page].
  • Stacks Image 525310
    Andrew G Reece and Christopher M Danforth. Instagram photos reveal predictive markers of depression. EPJ Data Science 2017. [Journal Page].


Stacks Image 525327
Laurent Hébert-Dufresne - Assistant Professor, Computer Science

Laurent studies the interaction of structure and dynamics. His research involves network theory, statistical physics and nonlinear dynamics along with their applications in epidemiology, ecology, biology, and sociology. Recent projects include comparing complex networks of different nature, the coevolution of human behavior and infectious diseases, understanding the role of forest shape in determining stability of tropical forests, as well as the impact of echo chambers in political discussions.

  • Stacks Image 525331
    Laurent Hébert‐Dufresne Adam F. A. Pellegrini Uttam Bhat Sidney Redner Stephen W. Pacala Andrew M. Berdahl. Edge fires drive the shape and stability of tropical forests. Ecology Letters 2018. [Journal Page]
  • Stacks Image 525335
    Samuel V. Scarpino, Antoine Allard, Laurent Hébert-Dufresne. The effect of a prudent adaptive behaviour on disease transmission. Nature Physics 2016. [Journal Page]
  • Stacks Image 525339
    Laurent Hébert-Dufresne, Joshua A. Grochow, Antoine Allard. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition. Nature Scientific Reports 2016. [Journal Page]


Stacks Image 525346
Paul Hines - School of Engineering, Associate Professor

Hines' work broadly focuses on finding ways to make electric energy more reliable, more affordable, with less environmental impact. Particular topics of interest include understanding the mechanisms by which small problems in the power grid become large blackouts, identifying and mitigating the stresses caused by large amounts of electric vehicle charging, and quantifying the impact of high penetrations of wind/solar on electricity systems.

  • Stacks Image 525350
    Paul D. H. Hines, Ian Dobson, Pooya Rezaei. Cascading Power Outages Propagate Locally in an Influence Graph That is Not the Actual Grid Topology. IEEE Transactions on Power Systems ( Volume: 32, Issue: 2, March 2017 ). [Journal Page]
  • Stacks Image 525354
    Mert Korkali, Jason G. Veneman, Brian F. Tivnan, James P. Bagrow & Paul D. H. Hines. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence. Scientific Reports volume 7, Article number: 44499 (2017. [Journal Page]
  • Stacks Image 525358
    Pooya Rezaei, Paul D. H. Hines, Margaret J. Eppstein. Estimating Cascading Failure Risk With Random Chemistry. IEEE Transactions on Power Systems ( Volume: 30, Issue: 5, Sept. 2015 ). [Journal Page]


Stacks Image 525386
James Bagrow - Assistant Professor, Department of Mathematics and Statistics

Bagrow's interests include: Complex Networks (community detection, social modeling and human dynamics, statistical phenomena, graph similarity and isomorphism), Statistical Physics (non-equilibrium methods, phase transitions, percolation, interacting particle systems, spin glasses), and Optimization(glassy techniques such as simulated/quantum annealing, (non-gradient) minimization of noisy objective functions).

  • Stacks Image 525390
    Y.-Y. Ahn, J. P. Bagrow and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature, 466: 761-764 (2010). [Journal Page].
  • Stacks Image 525394
    M. R. Frank, J. R. Williams, L. Mitchell, J. P. Bagrow, P. S. Dodds, C. M. Danforth. Constructing a taxonomy of fine-grained human movement and activity motifs through social media. In preparation. (2015). [Journal Page].
  • Stacks Image 525398
    J. P. Bagrow and L. Mitchell. The quoter model: a paradigmatic model of the social flow of written information. To appear, Chaos (2018). [Journal Page].